
www.manaraa.com

Automatic Parallelization of Divide and Conquer Algorithms �Radu Rugina and Martin RinardLaboratory for Computer ScienceMassachusetts Institute of TechnologyCambridge, MA 02139frugina, rinardg@lcs.mit.edu
AbstractDivide and conquer algorithms are a good match for modernparallel machines: they tend to have large amounts of in-herent parallelism and they work well with caches and deepmemory hierarchies. But these algorithms pose challengingproblems for parallelizing compilers. They are usually codedas recursive procedures and often use pointers into dynami-cally allocated memory blocks and pointer arithmetic. All ofthese features are incompatible with the analysis algorithmsin traditional parallelizing compilers.This paper presents the design and implementation ofa compiler that is designed to parallelize divide and con-quer algorithms whose subproblems access disjoint regionsof dynamically allocated arrays. The foundation of the com-piler is a ow-sensitive, context-sensitive, and interprocedu-ral pointer analysis algorithm. A range of symbolic analy-sis algorithms build on the pointer analysis information toextract symbolic bounds for the memory regions accessedby (potentially recursive) procedures that use pointers andpointer arithmetic. The symbolic bounds information al-lows the compiler to �nd procedure calls that can execute inparallel without violating the data dependences. The com-piler generates code that executes these calls in parallel. Wehave used the compiler to parallelize several programs thatuse divide and conquer algorithms. Our results show thatthe programs perform well and exhibit good speedup.1 IntroductionDivide and conquer algorithms solve problems by breakingthem up into smaller subproblems, recursively solving thesubproblems, then combining the results to generate a so-lution to the original problem. A simple algorithm thatworks well for small problem sizes terminates the recursion.Good divide and conquer algorithms exist for a large va-riety of problems, including sorting, matrix manipulation,and many dynamic programming problems [5].Divide and conquer algorithms have several appealingproperties that make them a good match for modern paral-�This research was supported in part by NSF Grant CCR-9702297.

lel machines. First, they tend to have a lot of inherent par-allelism. Once the division phase is complete, the subprob-lems are usually independent and can therefore be solved inparallel. Moreover, the recursive structure of the algorithmnaturally leads to recursively generated concurrency, whichmeans that even the divide and combine phases execute inparallel with divide and combine phases from other subprob-lems. This approach typically generates more than enoughconcurrency to keep the machine busy [3].Second, divide and conquer algorithms also tend to havegood cache performance. Once a subproblem �ts in thecache, the standard recursive solution reuses the cached datauntil the subproblem has been completely solved. Becausemost of the work takes place deep in the recursive call tree,the algorithm usually spends most of its execution time run-ning out of the cache. Furthermore, divide and conquer al-gorithms naturally work well with a range of cache sizes andat all levels of the memory hierarchy. As soon as a subprob-lem �ts into one level of the memory hierarchy, the algorithmruns out of that level (or below) until the subproblem hasbeen solved [7]. Divide and conquer programs therefore au-tomatically adapt to di�erent cache hierarchies, and tendto run well without modi�cation on whatever machine isavailable.It can be quite di�cult, however, to parallelize programsthat use divide and conquer algorithms. The natural formu-lation of these algorithms is recursive. For e�ciency reasons,programs often use pointers into arrays and pointer arith-metic to identify subproblems. Our benchmark programsalso tend to use dynamic memory allocation to match thesizes of the data structures to the problem size. All of theseproperties pose challenging analysis problems for the com-piler. Moreover, traditional analyses for parallelizing com-pilers are of little or no use for this class of programs | theyare designed to analyze loop nests that access arrays usinga�ne array index expressions, not recursive procedures thatuse pointers and pointer arithmetic.Inspired by the appealing properties of divide and con-quer algorithms, we designed and implemented a paralleliz-ing compiler for programs that use these algorithms. Thispaper presents analysis algorithms and experimental resultsfrom this e�ort. To successfully parallelize divide and con-quer programs, we had to develop a new approach for par-allelizing compilers and a new set of sophisticated analysesthat realize this approach. These analyses reason symbol-ically about how (potentially recursive) procedures accessspeci�c regions of dynamically allocated memory.

www.manaraa.com

1.1 Analysis OverviewOur compiler is designed primarily to parallelize algorithmswhose subprograms use pointers and pointer arithmetic toaccess disjoint regions of dynamically allocated arrays. Forthese algorithms, the analysis usually proceeds as follows.The compiler �rst runs a ow-sensitive, context-sensitive,and interprocedural pointer analysis algorithm. The infor-mation extracted by this analysis is used in all successiveanalyses. The compiler then extracts symbolic expressionsfor the regions of memory accessed in the procedures thatimplement the base and combination phases of the divideand conquer algorithm. It uses these expressions in an in-terprocedural �xed-point analysis that extracts expressionsfor the regions of memory accessed by the recursive proce-dures that implement the divide phase of the algorithm. Ine�ect, these expressions make explicit the memory access in-variants that drive the recursive structure of the algorithm.The compiler then runs a dependence testing analysison the extracted expressions from adjacent calls. If theexpressions represent disjoint regions of memory, the callsare independent and can execute in parallel. The depen-dence tester uses both pointer analysis information (to de-termine that expressions denote regions in di�erent alloca-tion blocks) and logical reasoning (to determine that expres-sions denote nonoverlapping regions in the same allocationblock).1.2 Other ApplicationsAlthough we developed these analyses to parallelize divideand conquer algorithms, we believe they will be useful inother contexts. Fundamentally, our analysis extracts ex-pressions that characterize how pointer-based programs ac-cess regions of dynamically allocated memory. This tech-nology could easily be applied to symbolic array boundschecking, to detect data races in explicitly parallel programs,and as part of a program understanding system that helpsprogrammers understand the behavior of complex, pointer-based programs. We also believe we have developed the ba-sic analysis technology necessary to fully extend traditionalparallelizing compiler technology to heavily optimized pro-grams whose loops access memory using pointers rather thanarray references.Finally, we contrast the problem we are solving and ouranalysis techniques with the problem and analysis techniquesfor traditional parallelizing compilers. Traditional paralleliz-ing compilers are designed to exploit loop-level parallelismin computations that access dense matrices using a�ne ac-cess functions. This problem naturally leads to integer pro-gramming algorithms that analyze potential interferencesbetween loop iterations. Our compiler is designed to ex-ploit recursively generated concurrency in divide and con-quer computations that use pointers to identify subproblemsand manipulate data. Faced with this problem, we devel-oped a set of symbolic analysis algorithms. These algorithmsuse �xed-point techniques to extract invariants that describethe regions of memory that recursive procedures access.This paper makes the following contributions:� Approach: It identi�es a new approach for auto-matically parallelizing divide and conquer algorithmswhose subproblems access disjoint regions of dynam-ically allocated arrays. The approach fully supportsrecursion and the heavy use of pointers and pointerarithmetic.

� Algorithms: It presents a set of novel analysis algo-rithms that, together, enable a compiler to automati-cally parallelize divide and conquer programs. Thesealgorithms are based on pointer analysis and symbolicanalysis of the regions of dynamically allocated mem-ory accessed by (potentially recursive) procedures.� Experimental Results: It presents experimental re-sults for several automatically parallelized programs.These results show that the compiler is capable of com-piling divide and conquer algorithms and that the re-sulting parallel code performs well.The remainder of the paper is organized as follows. Sec-tion 2 presents an example that illustrates the actions of thecompiler. Sections 3, 4, 5, 6, and 7 present the analysis al-gorithms. Section 8 presents the experimental results fromour parallelizing compiler. Section 9 discusses related work;we conclude in Section 10.2 ExampleFigure 1 presents an example of the kind of programs thatour analysis is designed to handle. The sort procedureon line 18 implements a recursive, divide-and-conquer al-gorithm written in C. It takes an unsorted input array dof size n, and sorts it, using the array t (also of size n) astemporary storage. The algorithm is structured as follows.In the divide part of the algorithm, the sort proceduredivides the two arrays into four sections and, in lines 29through 32, calls itself recursively to sort the sections. Oncethe sections have been sorted, the combination phase in lines34 through 37 produces the �nal sorted array. It merges the�rst two sorted sections of the d array into the �rst half ofthe t array, then merges the last two sorted sections of d intothe last half of t. It then merges the two halves of t backinto d. The base case of the algorithm uses the insertionsort procedure in lines 9 through 17 to sort small sections.For e�ciency reasons, the sort program identi�es sub-problems using pointers into dynamically allocated memoryblocks that hold the data and accesses these blocks via thesepointers. This strategy leads to code containing signi�cantamounts of pointer arithmetic and pointer comparison oper-ators. Note, for example, the pointer arithmetic in lines 24through 28 and the < pointer comparison operators in lines3, 6, and 7. This code will usually run faster than code thatuses integer array indices to identify and solve subproblems.There are two sources of concurrency in this program:the four recursive calls to the sort procedure can execute inparallel, and the �rst two calls to the merge procedure canexecute in parallel.The basic problem a parallelizing compiler must solveis to determine the regions of memory that each procedureaccesses. In our example, the compiler determines that acall to merge(l1,h1,l2,h2,d) reads the memory regions[l1; h1�1] and and [l2; h2�1] and writes the memory region[d; d+ (h1� l1) + (h2� l2)� 1].1 It also determines that acall to insertionsort(l,h) reads and writes [l; h� 1], anda call to sort(d,t,n) reads and writes [d; d + n � 1] and[t; t+ n� 1].1Here we use the notation [l; h] to denote the region of memorybetween the addresses l and h, inclusive. If h is less than l, [l; h]denotes the empty region. As is standard in C, we assume continguousallocation of arrays, and that the addresses of the elements increaseas the array indices increase.

www.manaraa.com

1: void merge(int *l1, int *h1,2: int *l2, int *h2, int *d) f3: while ((l1 < h1) && (l2 < h2))4: if (*l1 < *l2) *d++ = *l1++;5: else *d++ = *l2++;6: while (l1 < h1) *d++ = *l1++;7: while (l2 < h2) *d++ = *l2++;8: g9: void insertionsort(int *l, int *h) f10: int *p, *q, k;11: for (p = l+1; p < h; p++) f12: k = *p;13: for (q = p-1; l <= q && k < *q; q--)14: *(q+1) = *q;15: *(q+1) = k;16: g17: g18: void sort(int *d, int *t, int n) f19: int *d1, *d2, *d3, *d4, *d5,20: *t1, *t2, *t3, *t4;21: if (n < CUTOFF) f22: insertionsort(d, d+n);23: g else f24: d1 = d; t1 = t;25: d2 = d1 + n/4; t2 = t1 + n/4;26: d3 = d2 + n/4; t3 = t2 + n/4;27: d4 = d3 + n/4; t4 = t3 + n/4;28: d5 = d4+(n-3*(n/4));29: sort(d1, t1, n/4);30: sort(d2, t2, n/4);31: sort(d3, t3, n/4);32: sort(d4, t4, n-3*(n/4));33:34: merge(d1, d2, d2, d3, t1);35: merge(d3, d4, d4, d5, t3);36:37: merge(t1, t3, t3, t1+n, d);38: g39: g40: void main() f41: int n;42: int *data, *temp;43: scanf("%d", & n);44: if (0 < n) f45: data = (int *) malloc(sizeof(int)*n);46: temp = (int *) malloc(sizeof(int)*n);47: /* code to initialize the data array */48: sort(data, temp, n);49: /* code that uses the sorted array */50: g51: gFigure 1: Divide and Conquer Sorting Example

2.1 Region ExpressionsRoughly speaking, the compiler extracts these region expres-sions as follows. It �rst performs a ow-sensitive, context-sensitive, and interprocedural pointer analysis. The infor-mation from this pass is used at various places throughoutthe rest of the analyses. In some cases, the results are usedto increase the precision of the analysis by determining thatpointer assignments do not a�ect the values of local vari-ables; in other cases they are used to disambiguate expres-sions that denote regions of memory in di�erent allocationblocks.The compiler next performs an analysis that extractssymbolic upper and lower bounds for each pointer or inte-ger variable at each program point. These bounds are rep-resented as expressions in the initial values of the procedureparameters. In our example, the analysis determines thatat line 14, l � q � h� 2; at line 15, l� 1 � q � h� 2; andat line 12, l+ 1 � p � h� 1.The compiler next examines all of the load or store in-structions in the program. It uses the symbolic bounds togenerate regions that the accesses must fall into. In our ex-ample, the analysis is able to place the reads via p at line12 in the region [l + 1; h � 1], the reads via q at lines 13and 14 in the region [l; h � 2], the writes via q at line 14in the region [l + 1; h � 1], and the writes via q at line 15in the region [l; h � 1]. The compiler coalesces these re-gions to deduce that a call to insertionsort(l,h) readsand writes [l; h�1]. A similar analysis enables the compilerto determine that a call to merge(l1,h1,l2,h2,d) reads thememory regions [l1; h1 � 1] and [l2; h2 � 1] and writes thememory region [d; d+ (h1� l1) + (h2� l2)� 1].The compiler next uses the region expressions from theanalysis of merge and insertionsort as the basis for a �xed-point algorithm that determines the memory locations thatthe sort procedure accesses. The algorithm repeatedly an-alyzes the sort procedure, incrementally deriving more pre-cise information about the regions of memory that it ac-cesses.In our example, the analysis proceeds as follows. Thealgorithm uses the analysis results for insertionsort andmerge to determine that the call to insertionsort on line22 reads and writes [d; d+ n � 1], and the call to merge online 34 reads [d1; d2�1] and [d2; d3�1] and writes [t1; t1+(d2� d1) + (d3� d2)� 1]. It simpli�es the upper and lowerbound expressions to determine that the call to merge reads[d; d+ n=4� 1] and [d+ n=4; d+ n=2� 1] and writes [t; t+n=2� 1]. It then coalesces adjacent regions to derive a readregion of [d; d+n=2�1] and a write region of [t; t+n=2�1].A similar analysis for the other merge call sites combinedwith the previously described information yields the �nalread and write regions [d; d+ n � 1] and [t; t+ n� 1] for acall to sort(d,t,n).The algorithm then analyzes the sort procedure un-der the assumption that each call reads and writes the re-gions described above. This analysis derives that a call tosort(d,t,n) reads and writes [d; d+n�1] and [t; t+n�1].The algorithm has therefore reached a �xed point and con-verges.2.2 ParallelizationTo parallelize the program, the algorithm uses the extractedregion expressions to perform dependence tests between ad-jacent call sites. If there is no dependence, the compiler

www.manaraa.com

generates code that executes the calls in parallel.2 In ourexample, the dependence test between the recursive calls tosort in lines 29 and 30 proceeds as follows. The compileruses the region expressions for sort to determine that the�rst call reads and writes [d; d+n=4�1] and [t; t+n=4�1],while the second call reads and writes [d+ n=4; d+ n=2� 1]and [t + n=4; t + n=2 � 1]. The compiler checks all pairsof region expressions from the two call sites to see if theyare independent. If so, the calls are independent and canexecute in parallel.There are three ways for region expressions to be inde-pendent: either they denote regions in di�erent allocationblocks, they both denote regions that are read, or they de-note nonoverlapping regions of the same block. The com-piler uses the pointer analysis information to determine ifregion expressions denote regions of di�erent blocks and todetermine if the region expressions both denote regions thatare read. It reasons logically about the upper and lowerbound expressions to determine if region expressions denotenonoverlapping regions of the same block. In our example,the compiler uses pointer analysis information to determinethat [d; d+ n=4� 1] and [t+ n=4; t+ n=2� 1] denote mem-ory regions in di�erent blocks. It uses logical reasoning todetermine that [d; d + n=4 � 1] and [d + n=4; d + n=2 � 1]denote nonoverlapping regions of the same block. It can usesimilar strategies to determine that all of the other pairs areindependent, and that the calls can execute in parallel.Using this basic approach, the compiler can determinethat all four recursive calls to sort can execute in parallel,and that the �rst two calls to merge can execute in parallel.It therefore generates Cilk code that executes these callsin parallel. Figure 2 contains the generated code for thesort procedure in our example. This code uses the Cilkspawn construct to execute calls in parallel, and the Cilksync construct to synchronize after the parallel calls.3 Analysis OverviewThe primary goal of the analysis is to obtain, for each pro-cedure, a set of symbolic region expressions that character-ize how the procedure accesses memory. The compiler usesthese region expressions to �nd independent procedure calls,then generates code that executes independent calls in par-allel.Each region expression contains a symbolic lower boundand a symbolic upper bound. These bounds are expressedin terms of a reference set of variables. The reference setfor each procedure consists of a set of variables that denotethe initial values, or values at the start of the executionof the procedure, of the parameters and referenced globalvariables. We denote the initial value of a parameter orglobal variable p by p0. For example, the reference set forthe sort procedure in Figure 1 is fd0; t0; n0g. The analysisconsists of several steps:� Pointer Analysis: The pointer analysis extracts in-formation used by all succeeding analyses.� Bounds Analysis: The intraprocedural bounds anal-ysis extracts symbolic upper and lower bounds for the2More precisely, the compiler generates code that exposes theconcurrency to the run-time system. Actually creating a full-blownthread at each call site would generate an excessive amount of over-head. We generate code in the Cilk parallel programming language;the Cilk run-time system uses lazy task creation [15, 3] to generateonly as many threads required to keep the machine busy.

18: void sort(int *d, int *t, int n) f19: int *d1, *d2, *d3, *d4, *d5,20: *t1, *t2, *t3, *t4;21: if (n < CUTOFF) f22: insertionsort(d, d+n);23: g else f24: d1 = d; t1 = t;25: d2 = d1 + n/4; t2 = t1 + n/4;26: d3 = d2 + n/4; t3 = t2 + n/4;27: d4 = d3 + n/4; t4 = t3 + n/4;28: d5 = d4+(n-3*(n/4));29: spawn sort(d1, t1, n/4);30: spawn sort(d2, t2, n/4);31: spawn sort(d3, t3, n/4);32: spawn sort(d4, t4, n-3*(n/4));33: sync ;34: spawn merge(d1, d2, d2, d3, t1);35: spawn merge(d3, d4, d4, d5, t3);36: sync ;37: merge(t1, t3, t3, t1+n, d);38: g39: gFigure 2: Generated Parallel Code for Sorting Examplevalues of pointer variables at each point in the pro-gram. These bounds are expressed in terms of thereference set of the enclosing procedure.� Region Analysis: The region analysis extracts theset of regions accessed by each procedure. It �rst usesthe results of the bounds analysis to extract a regionexpression for each pointer dereference. It then coa-lesces region expressions from the same procedure toobtain a minimal set of regions that each procedureaccesses directly. An interprocedural �xed-point algo-rithm derives region expressions for the entire (poten-tially recursive) computation of each procedure.� Parallelization: The concurrency extractor comparesregion expressions to �nd independent procedure calls(two calls are independent if neither's computation ac-cesses memory that the other's computation writes).The code generator then generates code that executesindependent calls in parallel.Figure 3 illustrates how all of these analyses come to-gether in the overall structure of the compiler.4 Pointer AnalysisWe use a ow-sensitive, context-sensitive, and interproce-dural pointer analysis algorithm [18]. The analysis worksfor both sequential and multithreaded programs, althoughin the research presented in this paper, we use it only forsequential programs. The algorithm uses location sets torepresent the memory locations accessed by statements thatdereference pointers and caches the results of previous anal-yses to avoid performance problems caused by repeatedlyanalyzing the same procedure in the same context [21, 6].The pointer analysis serves two main purposes. First,it provides the pointer disambiguation information required

www.manaraa.com

Figure 3: The Structure of the Compiler

for other dataow analyses to give accurate results on pro-grams that use pointers. Most of the succeeding analysesreason symbolically about the computed pointer values, anda single write via an unresolved pointer reference would de-stroy all of the extracted information. The analysis resultsare also used in the dependence testing phase to determinethat region expressions denote regions in di�erent allocationblocks.5 Bounds AnalysisThe bounds analysis consists of three subanalyses: an or-der analysis that extracts information about the order rela-tionships between variables at each program point, an ini-tial value analysis that expresses the order relationships interms of the reference set, and a correlation analysis thatimproves the precision of the other analyses. At the end ofthe bounds analysis, the compiler has generated symbolicupper and lower bounds for each pointer dereference. Thesebounds are expressed in terms of the reference set of theenclosing procedure, and are used by the region analysis toderive region expressions for each procedure. The analysisuses the special lower bound �1 or the special upper bound+1 if it is unable to derive a lower or upper bound in termsof the reference set.5.1 Order AnalysisThe order analysis extracts two kinds of information. Forinteger variables, the zero order analysis maintains infor-mation about the values of the variables relative to zero.For pointer and integer variables, the relative order analy-sis maintains information about the values of the variablesrelative to other variables. Both analyses are predicated in-traprocedural dataow analyses with the order informationgenerated both at assignments and at conditionals.The zero order analysis maintains information for eachinteger variable i. It uses a lattice that can represent anydisjunction (logical or) of the following atomic relations:i � �2, i = �1, i = 0, i = 1, and i � 2. The analysisformally represents these atomic relations using the set O =fO�2; O�1; O0; O1; O2g. The lattice is the power set P(O)of O, and the meet operation is set union. At each programpoint p, the analysis produces a function Zerop : V! P(O);Zerop(i) represents the order relation for i relative to zero.Similarly, the relative order analysis maintains informa-tion for each pair of integer or pointer variables i and j.It uses a lattice that can represent any disjunction (logi-cal or) of the following atomic relations: i � j � 2, i =j � 1, i = j, i = j + 1, and i � j + 2. The analy-sis formally represents these atomic relations using the setR = fR�2; R�1; R0; R1; R2g. The lattice is the power setP(R) of R, and the meet operation is set union. At eachprogram point p, the analysis produces a function Relp :V � V ! P(R); Relp(i,j) represents the order relation be-tween i and j.When the analysis starts, both the zero order and rela-tive order information is initialized to the empty set for allvariables at all program points. The exception is the initialprogram point, which starts out with the zero order infor-mation initialized to O and the relative order informationinitialized to R for all variables.We next consider how assignments a�ect the order infor-mation. Each assignment to a variable i kills all zero orderrelations for i and all relative order relations that involve i.If the assignment is of the form i=n or i=j+n, where i and

www.manaraa.com

j are program variables and n 2 N is an integer constant,the analysis uses an abstract interpretation to generate neworder relations.Figure 4 presents the abstraction functions used in theanalysis. The functions gO and gR map integers to their ab-stract representations in the analysis lattices; the functionshO and hR are the corresponding abstractions for integeraddition.gR : Z! RgR(n) = (R�2 if n � �2Rn if n 2 f�1; 0; 1gR2 if n � 2hR : Z� f�2;�1; 0; 1; 2g ! P(R)hR(n;m) = (fgR(k) j k � n+mg if m = �2fgR(n+m)g if m 2 f�1; 0; 1gfgR(k) j k � n+mg if m = 2gO : Z! OgO(n) = (O�2 if n � �2On if n 2 f�1; 0; 1gO2 if n � 2hO : Z� f�2;�1; 0; 1; 2g ! P(O)hO(n;m) = (fgO(k) j k � n+mg if m = �2fgO(n+m)g if m 2 f�1; 0; 1gfgO(k) j k � n+mg if m = 2Figure 4: Abstraction Functions for Order AnalysisFigure 5 presents the analysis rules for assignment state-ments. These rules assume that p is the program point be-fore the assignment and p + 1 is the program point afterthe assigment. The basic idea is that the rules reconstructas much of the order information as the abstraction allows.For example, the analysis of the assignment i=5 will pro-duce, by rule 1, Zerop+1(i) = O2. In other words, i � 2after the execution of i=5. Moreover, if before the execu-tion of i=5, O1 2 Zerop(j) (i.e., j = 1), then rules 2 and 3require that O2 2 Relp+1(i,j) and O�2 2 Relp+1(j,i). Inin other words, i � j+2 and j � i�2 after the assignment.Next consider the analysis of the assignment i=j+1 withi 6= j. Rules 1 and 2 require that R1 2 Relp+1(i,j) andR�1 2 Relp+1(j,i) | i.e., after the execution of i=j+1,i = j + 1 and j = i � 1. If O�1 2 Zerop(j) (i.e., j =�1), then by rule 3, O0 2 Zerop+1(i) (i.e., i = 0 after theexecution of i=j+1). If R�2 2 Relp(j,k) (i.e., j � k � 2)then by rules 4 and 5, fR�2 [R�1g 2 Relp+1(i, k) andfR2 [R1g 2 Relp+1(k, i). In other words, i � k � 1 andk � i+ 1 at the program point after the assignment.We next consider how conditionals a�ect the order infor-mation. Conceptually, the order information that ows intothe true branch is the conjunction (logical and) of the orderinformation in the condition and the order information ow-ing into the conditional. The order information that owsinto the false branch is the conjunction of the negation of theorder information in the condition and the order informa-tion owing into the conditional. In our lattices P(O) and

P(R), the conjunction corresponds to the set intersectionoperation.The analysis extracts additional order information fromconditionals of the form i � n, i � n and i � j+ n, wherei and j are program variables and n 2 N is an integerconstant. Other conditionals such as i < n or i � j+n caneasily be reduced to these conditionals. The analysis alsosupports conditionals with equality tests by replacing themwith two conditionals with inequality tests: i = n is replacedby i � n and i � n, and i = j+ n is replaced by i � j+ nand j � i � n. Figure 6 shows the analysis rules for aconditional statement at program point p with a true branchat program point t and a false branch at program point f .For conditionals of the form i � n and i � n, only the zeroordering information of i is modi�ed; for conditionals of theform i � j + n, only the relative ordering information ofi and j is modi�ed. In other words, the analysis does notperform the full transitive closure of the additional orderinginformation generated at the conditional.The analysis rules in Figures 5 and 6 de�ne analyses thatare monotonic under the subset inclusion ordering | if theanalysis extracts more information about the ordering at aprogram point p (i.e., it can use fewer atomic relations torepresent the order information), it generates more informa-tion at p+ 1 (if there is an assignment at p) and at t and f(if there is a conditional at p).5.2 Initial Value AnalysisThe order analysis produces relations that can be used toderive upper and lower bounds for each variable at eachprogram point. But the order relations are expressed interms of the values of the variables at the current programpoint. The region analysis needs the bounds to be expressedin terms of the reference set of the procedure (i.e., the initialvalues of the parameters and the globals).The initial value analysis propagates the initial values ofthe parameters and the globals into the procedure. When-ever possible, it generates, for each variable at each programpoint, a mapping from that variable to an expression withvariables from the reference set. The analysis is structuredas a dataow analysis on the at lattice of expressions withleast element? and greatest element>. If the analysis is un-able to represent the value of a variable using an expressionwith variables from the reference set, it maps the variableto >.The transfer function for a statement p=exp generatesa new mapping for p. It �rst examines all of the variablesin exp. If any of these variables are currently mapped to?, the analysis maps p to ?. If none of the variables aremapped to ?, but at least one is mapped to >, the analysismaps p to >. Otherwise, it derives a new expression fromexp by mapping all of the variables in exp to their currentexpressions. The analysis maps p to this new expression.The merge operation is de�ned as follows. The merge of? with any expression exp is exp, the merge of two identicalexpressions exp is exp, the merge of two di�erent expressionsis >, and the merge of > with any expression is >.When the analysis starts, the mapping at the �rst pro-gram point maps each parameter and global variable to itscorresponding variable from the reference set. All other vari-ables are mapped to >. The mappings at all of the otherprogram points start out mapping all of the variables to ?.

www.manaraa.com

Rules for statement i = j+ n :1. if i 6= j then Relp+1(i,j) = fgR(n)g2. if i 6= j then Relp+1(j,i) = fgR(�n)g3. if Om 2 Zerop(j) then hO(n;m) � Zerop+1(i)4. if Rm 2 Rel(j,k), i 6= k then hR(n;m) � Relp+1(i,k)5. if Rm 2 Rel(j,k), i 6= k then hR(�n;�m) � Relp+1(k,i)
Rules for statement i = n :1. Zerop+1(i) = fgO(n)g2. if Om 2 Zerop(j), i 6= j then hR(n;�m) � Relp+1(i,j)3. if Om 2 Zerop(j), i 6= j then hR(�n;m) � Relp+1(j,i)

Figure 5: Analysis rules for an assignment at program point p.Rules for condition i � n :1. Zerot(k) = nZerop(i) \ hR(n+ 2;�2) if k = iZerop(k) if k 6= i2. Relt(k,j) = Relp(k,j) for any k 6= j3. Zerof (k) = nZerop(i) \ hR(n� 1; 2) if k = iZerop(k) if k 6= i4. Relf (k,j) = Relp(k,j) for any k 6= jRules for condition i � n :1. Zerot(k) = nZerop(i) \ hR(n� 2; 2) if k = iZerop(k) if k 6= i2. Relt(k,j) = Relp(k,j) for any k 6= j3. Zerof (k) = nZerop(i) \ hR(n+ 1;�2) if k = iZerop(k) if k 6= i4. Relf (k,j) = Relp(k,j) for any k 6= j

Rules for condition i � j+ n :1. Relt(k,l) = (Relp(i,j) \ hR(n+ 2;�2) if k = i; l = jRelp(j,i) \ hR(�n� 2; 2) if k = j; l = iRelp(k,l) otherwise2. Zerot(k) = Zerop(k) for any k3. Relf (k,l) = (Relp(j,i) \ hR(�n+ 1;�2) if k = j; l = iRelp(i,j) \ hR(n� 1; 2) if k = i; l = jRelp(k,l) otherwise4. Zerof (k) = Zerop(k) for any k
Figure 6: Analysis rules for a conditional at program point p, with true branch at program point t and false branch at programpoint f .5.3 Pointer Disambiguation in Order and Initial ValueAnalysesThe order and initial value analyses use the pointer analy-sis information to maintain precision in the face of pointerdereferences. Consider, for example, an assignment *p=exp.If the pointer analysis determines that p always points to aspeci�c variable v, the compiler can conceptually replace *pwith v in the assignment. This conceptual transformationallows the compiler to analyze *p=exp as v=exp. The orderanalysis can therefore generate precise order information forv and the initial value analysis can map v to an accurateexpression derived from exp. A similar approach preservesprecision in the presence of reads via pointers.The compiler falls back on conservative approaches if itis unable to completely disambiguate a pointer. Assumethat the compiler is only able to determine that, at the as-signment *p=exp, p points to one of several variables. Inthis case, the initial value analyis conservatively maps allof the potentially updated variables to > when it analyzesthe assignment. Similarly, the order analysis kills all of the

order information involving any of the potentially updatedvariables.Finally, it is possible for a callee procedure to changethe order or initial value information in the caller. This canhappen, for example, if the caller passes a pointer variable byreference, and the callee modi�es the pointer variable. Anunmapping process similar to that used in standard pointeranalysis algorithms ensures that the analyses conservativelymodel this possibility.5.4 Correlation AnalysisThe compiler uses correlation analysis to improve the preci-sion of the bounds analysis in cases, such as for the variabled in the merge procedure from Figure 1, when the order andinitial value analyses fail to derive accurate bounds. Cor-relation analysis is designed to detect relationships of thefollowing form: \whenever p is incremented, exactly one ofq, r, or s is also incremented". In this case, we say thatp is the target variable, and that q, r, and s are the corre-lated variables. The compiler uses this information to derive

www.manaraa.com

bounds for the target variable in terms of the bounds andinitial values of the correlated variables.The analysis is triggered whenever the compiler is un-able to derive bounds for a target variable using the orderand initial value analyses. For each target variable and eachprogram point, the analysis produces two sets of variables:a set of correlated variables with which the target variableis correlated, and a set of uncorrelated variables with whichthe target variable is known to be not correlated. The anal-ysis maintains the invariant that these two sets are disjoint.Once a variable enters the set of uncorrelated variables, itnever moves back into the set of correlated variables at anysubsequent point in the program.5.4.1 The Analysis AlgorithmThe analysis starts by examining the basic blocks to matcheach increment of the target variable with an increment inthe same basic block of a correlated variable whose sym-bolic bounds are already known from the order and initialvalue analyses. The initial value analysis must also havesuccessfully extracted a symbolic initial value for the corre-lated variable at the start of the procedure in terms of thereference set of the procedure. In the example in Figure 1,each increment of d is matched with the increment of l1 orl2 from the same line in the program. Because l1 and l2are parameters, their initial values are simply their valuesat the start of the merge procedure.This matching is used to de�ne the transfer functions forbasic blocks. The output set of uncorrelated variables thatows out of a basic block is the input set of uncorrelatedvariables that ows into the basic block plus all variablesupdated in the block whose updates are not matched. Theoutput set of correlated variables is computed as follows.The compiler �rst augments the input set of correlated vari-ables to include all variables with matched increments inthe basic block. It then removes all variables that are in theoutput set of uncorrelated variables.The merge operation is de�ned as follows. The outputset of uncorrelated variables is the union of the input setsof uncorrelated variables. The output set of correlated vari-ables is the union of the input sets of correlated variablesminus the output set of uncorrelated variables. The sets ofcorrelated and uncorrelated variables are empty when theanalysis starts, and monotonically increase to their �nal val-ues as the analysis proceeds.For the target variable d in the example in Figure 1, thesets of correlated variables for the basic blocks in lines 4 and5 are fl1g and fl2g, respectively. The sets of uncorrelatedvariables are empty. The merge operation at the top of thewhile loop in line 3 will compute fl1,l2g as the correlatedset for d, and will leave the uncorrelated set empty. Theanalysis reaches a �xed point with fl1, l2g as the corre-lated set for d at the beginning of each basic block thatdereferences d.5.4.2 Using Correlation InformationThe correlation information establishes equations for thevalues of reference variables in terms of the correlated vari-ables. Whenever a target variable is correlated with a setof variables at a certain program point, the di�erence be-tween the value of the target variable and its initial valueis equal to the sum of di�erences between the values of thecorrelated variables and their initial values. The compileruses this equation to derive bounds for the target variablein terms of the bounds for the correlation variables.

In the example in Figure 1, the equation between thevalues of the target variable d and the correlated variablesl1 and l2 is d � d0 = (l1 � l10) + (l2 � l20) at the startof each basic block that dereferences d. This equation canbe combined with the bounds l10 � l1 < h10 for l1 andl20 � l2 < h20 for l2 to obtain the bounds d0 � d <d0 + (h10 � l10) + (h20 � l20) for d.The compiler uses the bounds at the start of each basicblock to obtain bounds at each program point within thebasic block. It simply propagates the bounds from the startof the block into the block, incrementing the lower and upperbound whenever the target variable is incremented.6 Region AnalysisThe region analysis extracts symbolic region expressions thatcharacterize how each statement and the computation rootedat each call site access data. Throughout the analysis, thecompiler keeps reads and writes separate, generating a setof read region expressions and a separate set of write regionexpressions for each statement and each call site. Becausethe variables in these expressions are all from the referenceset of the enclosing procedure, the dependence tester can di-rectly compare the region expressions to see if they overlap.The region analysis starts with the results of the boundsanalysis, which generates an upper and lower bound for eachpointer dereference in terms of the reference set of the en-closing procedure. For each procedure, the region analysiscoalesces adjacent and overlapping regions from the proce-dure's pointer dereferences to obtain a minimal set of re-gions that the procedure directly accesses. It then uses aninterprocedural �xed-point algorithm to extract the regionsaccessed by the entire computation of the procedure. Thisalgorithm analyzes call sites and propagates region expres-sions from callees to callers.When the interprocedural analysis terminates, it has com-puted a set of region expressions for each procedure. Theseregion expressions are given in terms of the reference set ofthe procedure and characterize how that procedure accessesdata. As a byproduct of the interprocedural analysis, thecompiler also generates a set of symbolic region expressionsthat characterize how each statement and call site in theprogram access data; these region expressions are given interms of the reference set of the enclosing procedure. Thedependence testing phase uses these region expressions toextract the concurrency.6.1 Region ExpressionsEach region expression is represented in the form [l; u], wherel is the lower bound and u is the upper bound. Both l andu are symbolic expressions in terms of the reference set ofthe currently analyzed procedure. These expressions are ofthe form p+ exp, where p is a pointer into the accessed al-location block and exp is an integer expression representingthe pointer o�set.If the region expression summarizes how a statement orprocedure reads data, it is marked as a read expression; ifit summarizes how a statement or procedure writes data, itis marked as a write expression. It is important to realizethat each region expression identi�es a region of memorywithin a speci�c set of allocation blocks. The pointer anal-ysis determines the set of allocation blocks for each regionexpression. So even if the symbolic analysis is unable togenerate symbolic bounds for a region expression in termsof the reference set, the region expression does not denote

www.manaraa.com

all of memory. It merely denotes all of the memory in theallocation blocks that the pointer analysis extracted for thatregion expression.6.2 Intraprocedural Region AnalysisThe intraprocedural region analysis generates the local re-gion set of the procedure, or a minimal set of region ex-pressions that characterize how the procedure accesses data.The local region set is expressed in terms of the procedure'sreference set. The analysis starts by using the results ofthe bounds analysis to extract a region expression for eachpointer dereference in the procedure. At each pointer deref-erence, it uses the order information (as translated by theinitial value analysis into the reference set of the procedure)to obtain upper and lower bounds for the region that thedereference accesses. Together, these bounds make up theregion expression for that dereference. The special bound�1 is used as the lower bound for dereferences with nolower bound from the bounds analysis; +1 is used as theupper bound for dereferences with no upper bound from thebounds analysis.The local region set is initialized to the union of the re-gion expressions from all of the pointer dereferences in theprocedure. An iterative algorithm repeatedly �nds two re-gion expressions in this set whose upper and lower boundsare either adjacent or overlap. It then merges the regionsinto a new region as follows. The lower bound of the newregion is the minimum of the lower bounds of the originalregions, and the upper bound is the maximum of the upperbounds of the original regions. The original regions are re-moved from the local region set, the new region is insertedinto the set, and the algorithm iterates until there are nomore adjacent or overlapping regions.This algorithm assumes that the analysis can comparethe upper and lower bounds of region expressions and gen-erate the minimum and maximum of two bounds. Thesebounds are symbolic expressions in the reference set of en-closing procedure. During the bounds analysis, each boundsexpression is transformed into a sum of terms; each term is aproduct of a coe�cient and a variable from the reference set.The algorithm compares two such expressions by comparingcorresponding terms: one expression is larger than anotherif all of its terms are larger. The algorithm compares termsby comparing their coe�cients. If the variable from the ref-erence set is positive or zero, the compiler chooses the termwith the larger coe�cient as the larger term. If the variableis negative, the term with the larger coe�cient is the smallerterm. This approach requires that the compiler know thesign of the integer variables in the reference set. The cur-rent implementation relies on the programmer to declare allsuch variables as C unsigned variables, which forces them tobe nonnegative. It would be straightforward to implementan interprocedural abstract analysis to determine the signof variables in the reference set.The algorithm that computes the minimum and maxi-mum of two bounds expressions also operates at the granu-larity of terms. The minimum of two bounds expressions isthe sum, over all pairs of corresponding terms, of the smallerterm in the pair; the maximum is the sum of the larger termsin corresponding pairs.For the example in Figure 1, the local region sets for mainand sort are empty. The local region set for merge reads[l10; h10 � 1] and [l20; h20 � 1] and writes [d0; d0 + (h10 �l10)+h20�l20�1]. The local region set for insertionsortreads and writes [l10; h10 � 1].

6.3 Interprocedural Region AnalysisFor each procedure, the interprocedural region expressionanalysis uses the local region sets to derive a global regionset, or a minimal set of region expressions that characterizehow the entire execution of the procedure accesses data.6.3.1 Non-Recursive ProceduresFor non-recursive procedures, the analysis extracts the globalregion sets by propagating region sets up from the leaves ofthe call graph towards the root. For each procedure, theglobal region set is initialized to the procedure's local regionset. At each propagation step, the analysis performs a sym-bolic unmapping as follows. It �rst translates the region ex-pressions from the reference set of the callee to expressions inthe variables of the caller. It then translates the expressionsfrom the variables of the caller to expressions in the refer-ence set of the caller. The resulting expressions are addedto the current global region set of the caller, with adjacentor overlapping regions coalesced as discussed in Section 6.2.Consider, for example, the call site at line 34 in Figure 1where sort calls merge. The global region set for merge con-tains the read region expression [l10; h10 � 1]. The analysis�rst unmaps this region expression into the variables of thesort procedure to obtain the region expression [d1; d2� 1].It then uses the bounds analysis information to obtain thelower bound d0 for d1 and the upper bound d0+n0=4�1 ford2�1. Note that both bounds expressions are in terms of thereference set for sort. The compiler combines these boundsto obtain the region expression [d0; d0 + n0=4 � 1], whichis the translation of the original region expression from theglobal region set of merge into a region expression that char-acterizes, in part, how a speci�c call to merge accesses data.6.3.2 Recursive ProceduresThe analysis uses a �xed point algorithm to handle recur-sive procedures. For each recursive procedure, the analysisinitially sets the procedure's global region set to its local re-gion set. It then applies the bottom-up symbolic unmappingalgorithm described above to propagate region expressionsfrom callees to callers. It terminates the recursion by usingthe procedure's current global region set in the unmappingas an approximation of its actual global region set. When-ever possible, the unmapped region expressions are coalescedinto the current global region set of the caller. The analysisuses the coalescing algorithm discussed above in Section 6.2.The algorithm continues until it reaches a �xed point.In some cases, this analysis generates an unbounded num-ber of region expressions that cannot be coalesced. Thismay happen, for instance, when the recursive function ac-cesses a statically unbounded number of disjoint regions. Inthis case, the analysis as described above will not terminate.Even if the analysis is always able to coalesce the region ex-pressions from recursive calls into the current global regionset, the analysis as described above may not terminate if thebounds always increase or decrease.The compiler therefore imposes a �nite bound on thenumber of analysis iterations. If the analysis fails to con-verge within this bound, we replace the extracted regionexpressions with corresponding region expressions that iden-tify the entire allocation blocks as potentially accessed.In the example in Figure 1, the global region set forsort starts out empty. The interprocedural region analysisfor non-recursive procedures propagates the region expres-sions from the calls to insertionsort and merge into the

www.manaraa.com

sort procedure, and coalesces the resulting region expres-sions to add the read region [d0; d0 + n0 � 1] and the writeregion [t0; t0 + n0 � 1] to the global region set for sort.The interprocedural region analysis for recursive proceduresuses this global region set as an approximation to derive re-gion expressions that characterize how the recursive calls tosort access data. After coalescing these region expressionsback into the current global region set for sort, the analysisreaches a �xed point.7 ParallelizationThe goal of the compiler is to �nd sequences of procedurecalls that can execute in parallel. The primitives the com-piler works with are the Cilk spawn and sync primitives [3].The spawn primitive generates a parallel call | the spawnedprocedure executes in parallel with the rest of caller, includ-ing any subsequent parallel calls. The sync primitive blocksuntil all of the caller's outstanding parallel calls terminate.The output of the concurrency extraction phase of the com-piler consists of a set of spawn points (each spawn pointcorresponds to a parallel call) and a set of sync points. Thecompiler inserts these constructs to maximize concurrencysubject to the constraint that the parallel program preservethe data dependences of the original serial program.7.1 Dependence TestingGiven the Cilk primitives, the relevant data dependencesexist between a callee and subsequent statements in thecaller, and between multiple callees. The compiler enforcesthese dependences by comparing the region expressions fromcallees with region expressions from statements or othercallees. If a write region from one of the two has a nonemptyintersection with a write or read region from the other, thenthere is a potential data dependence. Otherwise, there is nodependence.The intersection test between two regions is performedas follows. The compiler �rst uses the pointer analysis infor-mation to check if the expressions denote regions in di�erentallocation blocks. If so, their intersection is empty and thereis no dependence. If not, the compiler does a symbolic checkof the expressions for the lower and upper bounds of the tworegions. If the upper bound for one region is less than thelower bound of the other, then the regions have an emptyintersection and there is no dependence. If the compiler isunable to determine that the upper bound for one region isless than the lower bound of the other, it must conservativelyassume that the intersection is nonempty. The bounds com-parison checks are done symbolically using the expressioncomparison algorithm described in Section 6.2.7.2 Concurrency ExtractionThe compiler uses the dependence test outlined above as thefoundation of an algorithm that identi�es parallel sections ofthe program, or sections in which each procedure call canexecute in parallel with all subsequent statements and allother procedure calls in the section.The parallel section algorithm starts with an initial callsite. It then traverses the control ow graph of the pro-gram to grow the parallel section as follows. It repeatedlyvisits a candidate statement or call site on the control owfrontier of the parallel section. To visit a candidate, thecompiler performs a dependence test between the symbolic

region expressions of of the candidate and the symbolic re-gion expressions of the call sites in the current parallel sec-tion. These symbolic region expressions are generated bythe region analysis, and are all expressed in terms of thereference set of the enclosing procedure.If all of the dependence tests indicate that there is nodependence, the candidate statement or call site is added tothe parallel section. Otherwise, the program point beforethe statement or call site is marked as a sync point. Thealgorithm continues until all of the statements or call siteson the frontier either have been visited or are the end nodeof the procedure.The analysis of the procedure generates multiple (poten-tially overlapping) parallel sections as follows. The compiler�rst traverses the call graph to �nd an initial call site. Itthen performs the parallel section algorithm described aboveto generate a set of sync points. The algorithm next �ndsanother call site that is not yet in any parallel section, andrepeats the parallel section algorithm using that call site asthe initial site. The algorithm terminates when every callsite is in a parallel section. All call sites in parallel sectionsthat contain at least two call sites are identi�ed as spawnpoints.7.3 Code GenerationOnce the compiler has determined the spawn and sync points,code generation is straightforward. The compiler inserts aspawn construct at each spawn point and a sync constructat each sync point.8 Experimental ResultsWe have implemented a parallelizing compiler based on theanalysis algorithms presented in this paper. This compilerwas implemented using the SUIF compiler infrastructure [1].We implemented all of the analyses, including the pointeranalysis, from scratch starting with the standard SUIF dis-tribution. The compiler generates code in the Cilk parallelprogramming language [3]. We present experimental resultsfor two programs: a version of the sorting program pre-sented in Section 2 and a divide and conquer matrix mul-tiplication program. The matrix multiplication program isrepresentative of matrix manipulation programs; the sortingprogram is representative of less regular divide and conqueralgorithms.We ran the generated programs on an eight processorSun Ultra Enterprise Server. Table 1 presents the executiontimes and self-relative speedups for the automatically par-allelized matrix multiply program. The input is a 1024 by1024 matrix of doubles. For comparison purposes, the exe-cution time of the standard naive, triply-nested matrix mul-tiply loop is 316 seconds, as opposed to 28.5 seconds for theautomatically parallelized version running on one processor.We attribute the performance di�erence to cache improve-ments from blocking and from an e�cient, hand-unrolledimplementation of the base case in the automatically paral-lelized version.Table 2 presents the execution times and self-relativespeedups for the automatically parallelized sort programpresented in Section 2. The input is four million randomlygenerated integers. For comparison purposes, the executiontime of the sequential version of this program is 9.23 sec-onds.

www.manaraa.com

1 2 4 6 8Time (seconds) 28.5 14.8 7.4 5.1 3.8Speedup 1.0 1.9 3.8 5.6 7.5Table 1: Execution Times and Speedups for Divide and Con-quer Matrix Multiply 1 2 4 6 8Time (seconds) 9.24 4.94 2.99 2.36 2.11Speedup 1.0 1.9 3.1 3.9 4.4Table 2: Execution Times and Speedups for Divide and Con-quer Sort9 Related WorkMany tree traversal programs can be viewed as divide andconquer programs. For this class of programs there is a sig-ni�cant body of research in the area of shape analysis, whichis designed to discover when a data structure has a certain\shape" such as a tree or list [4, 19, 8]. Several researchershave used shape analysis algorithms as the basis for com-pilers that automatically parallelize divide and conquer pro-grams that manipulate linked data structures [9, 13, 14]. Weare aware, however, of no previous research on parallelizingcompilers for divide and conquer programs (such as thosein our benchmark set) that use pointers to access disjointregions of large, contiguously allocated blocks of memory.Several researchers have developed symbolic analysis tech-niques for various parallelization approaches. Blume andHaghighat [2, 10] have independently developed symbolicanalysis techniques for parallelizing loop nests that manip-ulate dense matrices [2, 10]. Rinard and Diniz have devel-oped symbolic analysis techniques for detecting commutingoperations on objects and using the commutativity infor-mation to automatically parallelize irregular, object-basedprograms [17].Moon, Hall and Murphy have developed a data-ow anal-ysis that uses the conditions in ow of control statements toobtain extra precision. They use the analysis to generateconditions that guard conditionally optimized code, and togenerate conditions that use run-time information to iden-tify parallel loops [16].There has been a signi�cant amount of research on ex-tracting array sections in scienti�c programs that manipu-late dense matrices [20, 12, 11]. These techniques are alldesigned to work for programs with loop nests that accessmatrices using a�ne access functions. The techniques pre-sented in this paper, on the other hand, are designed to workfor pointer references in recursive procedures with generalcontrol ow.10 ConclusionTraditional parallelizing compilers have focused on an im-portant, but narrow, form of concurrency: the concurrencyavailable in loop nests that manipulate dense matrices us-ing a�ne access functions. This paper presents algorithmsand experimental results from a parallelizing compiler that

focuses on a more general and no less important form of con-currency: the recursively generated concurrency available individe and conquer algorithms.To exploit this form of concurrency, we found that we hadto implement both pointer analysis and a set of new symbolicanalysis algorithms. These algorithms allow the compiler toreason statically about the regions of memory accessed in(potentially recursive) procedures that heavily use pointersand pointer arithmetic. The compiler uses this region accessinformation to detect independent calls to these proceduresand to generate code that executes the independent calls inparallel.We have implemented a parallelizing compiler based onthis general approach; our experimental results show thatthis compiler is capable of automatically extracting concur-rency from optimized implementations of divide and conqueralgorithms.AcknowledgementsWe would like to thank Nate Kushman, Darko Marinov, andDon Dailey for their help in generating the experimentalresults.References[1] S. Amarasinghe, J. Anderson, M. Lam, and C. Tseng.The SUIF compiler for scalable parallel machines. InProceedings of the Eighth SIAM Conference on ParallelProcessing for Scienti�c Computing, February 1995.[2] W. Blume and R. Eigenmann. Symbolic range propa-gation. In Proceedings of the 9th International Paral-lel Processing Symposium, pages 357{363, Santa Bar-bara, CA, April 1995. IEEE Computer Society Press,Los Alamitos, Calif.[3] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson,K. Randall, and Y. Zhou. Cilk: An e�cient multi-threaded runtime system. In Proceedings of the 5thACM SIGPLAN Symposium on Principles and Prac-tice of Parallel Programming, Santa Barbara, CA, July1995. ACM, New York.[4] D. Chase, M. Wegman, and F. Zadek. Analysis of point-ers and structures. In Proceedings of the SIGPLAN'90 Conference on Program Language Design and Im-plementation, pages 296{310, White Plains, NY, June1990. ACM, New York.[5] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Intro-ductions to Algorithms. The MIT Press, Cambridge,Mass., Cambridge, MA, 1990.[6] M. Emami, R. Ghiya, and L. Hendren. Context-sensitive interprocedural points-to analysis in the pres-ence of function pointers. In Proceedings of the SIG-PLAN '94 Conference on Program Language Designand Implementation, pages 242{256, Orlando, FL, June1994. ACM, New York.[7] J. Frens and D. Wise. Auto-blocking matrix-multiplication or tracking BLAS3 performance fromsource code. In Proceedings of the 6th ACM SIGPLANSymposium on Principles and Practice of Parallel Pro-gramming, Las Vegas, NV, June 1997.

www.manaraa.com

[8] R. Ghiya and L. Hendren. Is is a tree, a DAG or a cyclicgraph? a shape analysis for heap-directed pointers in C.In Proceedings of the 23rd Annual ACM Symposium onthe Principles of Programming Languages, pages 1{15,January 1996.[9] V. Guarna. A technique for analyzing pointer and struc-ture references in parallel restructuring compilers. Pro-ceedings of the 1988 International Conference on Par-allel Processing, August 1988.[10] M. Haghighat and C. Polychronopoulos. Symbolicanalysis: A basis for parallelization, optimization, andscheduling of programs. In Proceedings of the SixthWorkshop on Languages and Compilers for ParallelComputing, Portland, OR, August 1993.[11] M.W. Hall, S.P. Amarasinghe, B.R. Murphy, S. Liao,and M.S. Lam. Detecting coarse-grain parallelism us-ing an interprocedural parallelizing compiler. In Pro-ceedings of Supercomputing '95, San Diego, CA, Decem-ber 1995. IEEE Computer Society Press, Los Alamitos,Calif.[12] P. Havlak and K. Kennedy. An implementationof interprocedural bounded regular section analysis.IEEE Transactions on Parallel and Distributed Sys-tems, 2(3):350{360, July 1991.[13] L. Hendren and A. Nicolau. Parallelizing programs withrecursive data structures. IEEE Transactions on Paral-lel and Distributed Systems, 1(1):35{47, January 1990.[14] J. Larus and P. Hil�nger. Detecting conicts betweenstructure accesses. In Proceedings of the SIGPLAN '88Conference on Program Language Design and Imple-mentation, Atlanta, GA, June 1988. ACM, New York.[15] E. Mohr, D. Kranz, and R. Halstead. Lazy task cre-ation: A technique for increasing the granularity of par-allel programs. In Proceedings of the 1990 ACM Confer-ence on Lisp and Functional Programming, pages 185{197. ACM, New York, June 1990.[16] S. Moon, M. Hall, and B. Murphy. Predicated arraydata-ow analysis for run-time parallelization. In Pro-ceedings of the 1998 ACM International Conference onSupercomputing, Melbourne, Australia, July 1993.[17] M. Rinard and P. Diniz. Commutativity analysis: Anew framework for parallelizing compilers. In Pro-ceedings of the SIGPLAN '96 Conference on ProgramLanguage Design and Implementation, pages 54{67,Philadelphia, PA, May 1996. ACM, New York.[18] R. Rugina and M. Rinard. Pointer analysis for mul-tithreaded programs. In Proceedings of the SIGPLAN'99 Conference on Program Language Design and Im-plementation, Atlanta, GA, May 1999.[19] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with destructive updat-ing. ACM Transactions on Programming Languagesand Systems, 20(1):1{50, January 1998.[20] R. Triolet, F. Irigoin, and P. Feautrier. Direct paral-lelization of CALL statements. In Proceedings of theSIGPLAN '86 Symposium on Compiler Construction,Palo Alto, CA, June 1986.

[21] R. Wilson and M. Lam. E�cient context-sensitivepointer analysis for C programs. In Proceedings of theSIGPLAN '95 Conference on Program Language De-sign and Implementation, La Jolla, CA, June 1995.ACM, New York.

